हिंदी

If n is a positive integer, find the coefficient of x–1 in the expansion of (1+x)2(1+1x)n - Mathematics

Advertisements
Advertisements

प्रश्न

If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`

योग

उत्तर

We have `(1 + x)^n   1 + 1^n/x`

= `(1 + x)^n  (x + 1)^n/x`

= `(1 + x)^(2n)/x^n`

Now to find the coefficient of x–1 in `(1 + x)^n  1 + 1^n/x`

It is equivalent to finding coefficient of x–1 in `(1 + x)^(2n)/x^n` 

Which in turn is equal to the coefficient of xn–1 in the expansion of (1 + x)2n

Since (1 + x)2n = `""^(2n)"C"_0  x^0 + ""^(2n)"C"_1 +  x^1 + ""^(2n)"C"_2  x^2 + ... + ""^(2n)"C"_(n - 1)  x^(n - 1) + ... + ""^(2n)"C"_(2n)  x^(2n)`

Thus the coefficient of `x^(n - 1)` is `""^(2n)"C"_(n - 1)`

= `(2n)/((n - 1)(2n - n + 1))`

= `(2n)/((n - 1)(n + 1))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Solved Examples [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Solved Examples | Q 12 | पृष्ठ १३६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Expand the expression: `(x + 1/x)^6`


Using binomial theorem, evaluate f the following:

(101)4


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Which of the following is larger? 9950 + 10050  or 10150


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×