Advertisements
Advertisements
प्रश्न
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
उत्तर
We have `(1 + x)^n 1 + 1^n/x`
= `(1 + x)^n (x + 1)^n/x`
= `(1 + x)^(2n)/x^n`
Now to find the coefficient of x–1 in `(1 + x)^n 1 + 1^n/x`
It is equivalent to finding coefficient of x–1 in `(1 + x)^(2n)/x^n`
Which in turn is equal to the coefficient of xn–1 in the expansion of (1 + x)2n
Since (1 + x)2n = `""^(2n)"C"_0 x^0 + ""^(2n)"C"_1 + x^1 + ""^(2n)"C"_2 x^2 + ... + ""^(2n)"C"_(n - 1) x^(n - 1) + ... + ""^(2n)"C"_(2n) x^(2n)`
Thus the coefficient of `x^(n - 1)` is `""^(2n)"C"_(n - 1)`
= `(2n)/((n - 1)(2n - n + 1))`
= `(2n)/((n - 1)(n + 1))`
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(x/3 + 1/x)^5`
Using binomial theorem, evaluate the following:
(99)5
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Expand the following (1 – x + x2)4
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Which of the following is larger? 9950 + 10050 or 10150
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.