मराठी

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = 32. - Mathematics

Advertisements
Advertisements

प्रश्न

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.

बेरीज

उत्तर

We have (2 + 3x)9 = `2^9 (1 + (3x)/2)^9`

Now, `("T"_(r + 1))/"T"_r = (2^9 [""^9"C"_r ((3x)/2)^r])/(2^9 [""^9"C"_(r - 1) ((3x)/2)^(r - 1)]`

= `(""^9"C"_r)/(""^9"C"_(r - 1)) |(3x)/2|`

= `9/(r(9 - r)) * ((r - 1)(10 - r))/9 |(3x)/2|`

= `(10 - r)/r |(3x)/2|`

= `(10 - r)/r (9/4)`

Since x = `3/2`

Therefore, `("T"_(r + 1))/"T"_r ≥ 1`

⇒ `(90 - 9r)/(4r) ≥ 1`

⇒ 90 – 9r ≥ 4r   ....(Why)

⇒ r ≤ `90/13`

⇒ r ≤ 6 `12/13`

Thus the maximum value of r is 6

Therefore, the greatest term is Tr+1 = T7

Hence, T7 = `2^9 [""^9"C"_6 ((3x)/2)^6]`

Where x = `3/2`

= `2^9 * ""^9"C"_6 (9/4)^6`

= `2^9 * (9 xx 8 xx 7)/(3 xx 2 xx 1) (3^12/2^12)`

= `(7 xx 3^13)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Solved Examples [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Solved Examples | Q 11 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coefficient of a5b7 in (a – 2b)12


Find the 4th term in the expansion of (x – 2y)12 .


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×