मराठी

If the Coefficients of Three Consecutive Terms in the Expansion of (1 + X)N Be 76, 95 and 76, Find N. - Mathematics

Advertisements
Advertisements

प्रश्न

If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.

उत्तर

\[\text{ Suppose r, }  \left( r + 1 \right) \text{ and }  \left( r + 2 \right) \text{ are three consecutive terms in the given expansion }  . \]

\[\text { The coefficients of these terms are } ^{n}{}{C}_{r - 1} , ^{n}{}{C}_r \text{ and } ^ {n}{}{C}_{r + 1} . \]

\[\text{ According to the question, } \]

\[ ^{n}{}{C}_{r - 1} = 76\]

\[^{n}{}{C}_r = 95\]

\[ ^{n}{}{C}_{r + 1} = 76\]

\[ \Rightarrow ^{n}{}{C}_{r - 1} = ^{n}{}{C}_{r + 1} \]

\[ \Rightarrow r - 1 + r + 1 = n [\text{ If }  ^{n}{}{C}_r = ^{n}{}{C}_s \Rightarrow r = s \text{ or } r + s = n]\]

\[ \Rightarrow r = \frac{n}{2}\]

\[ \therefore \frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{95}{76}\]

\[ \Rightarrow \frac{n - r + 1}{r} = \frac{95}{76}\]

\[ \Rightarrow \frac{\frac{n}{2} + 1}{\frac{n}{2}} = \frac{95}{76}\]

\[ \Rightarrow 38n + 76 = \frac{95n}{2} \]

\[ \Rightarrow \frac{19n}{2} = 76\]

\[ \Rightarrow n = 8\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.2 | Q 31 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of `(x/3 + 9y)^10`


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The last two digits of the numbers 3400 are 01.


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×