मराठी

Find n in the binomial (23+133)n if the ratio of 7th term from the beginning to the 7th term from the end is 16 - Mathematics

Advertisements
Advertisements

प्रश्न

Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`

बेरीज

उत्तर

The given expression is `(root(3)(2) + 1/(root(3)(3)))^"n"` 

= `(2^(1/3) + 1/3^(1/3))^"n"`

General Term `"T"(r + 1) = ""^n"C"_r x^(n - r) y^r`

T7 = T6+1 = `""^n"C"_6 (2^(1/3))^(n - 6)  (1/(3^(1/3)))^6`

= `""^n"C"_6 (2)^((n -6)/3) * (1/3^2)`

= `""^n"C"_6 (2)^((n - 6)/3) * (3)^-2`

7th term from the end = (n – 7 + 2)th term from the beginning

= (n – 5)th term from the beginning

So, `"T"_(n - 6 + 1) = ""^n"C"_(n - 6) (2^(1/3))^(n - n + 6) (1/3^(1/3))^(n - 6)`

= `""^n"C"_(n - 6) (2)^2 * (1/(3^((n - 6)/3)))`

= `""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)`

We get `(""^n"C"_6 ^((n - 6)/3) (3)^-2)/(""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)) = 1/6`

⇒ `(""^n"C"_(n - 6) (2)^((n - 6)/3) (3)^-2)/(""^n"C"_(n - 6) (2)^2 (3)^((6 - n)/3)) = 1/6`

⇒ `(2)^((n - 6)/3 - 2) * (3)^(-2 (6 - n)/3) = 1/6`

⇒ `(2)^((n - 6 - 6)/3) * (3)^((-6 - 6 + n)/3) = 1/6`

⇒ `(2)^((n - 12)/3) * (3)^((n - 12)/3)` = (6)-1

⇒ `(6)^((n - 12)/3) = (6)^-1`

⇒ `(n - 12)/3` = – 1

⇒ n – 12 = – 3

⇒ n = 12 – 3 = 9

Hence, the required value of n is 9.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 14 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 4th term in the expansion of (x – 2y)12 .


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is


In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


The last two digits of the numbers 3400 are 01.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×