Advertisements
Advertisements
प्रश्न
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
उत्तर
\[\text{ We have: } \]
\[ T_1 = 729, T_2 = 7290 \text{ and } T_3 = 30375\]
\[\text{ Now,} \]
\[ ^{n}{}{C}_0 a^n b^0 = 729\]
\[ \Rightarrow a^n = 729\]
\[ \Rightarrow a^n = 3^6 \]
\[ ^{n}{}{C}_1 a^{n - 1} b^1 = 7290\]
\[^{n}{}{C}_2 a^{n - 2} b^2 = 30375\]
\[\text{ Also, } \]
\[\frac{^{n}{}{C}_2 a^{n - 2} b^2}{^{n}{}{C}_1 a^{n - 1} b^1} = \frac{30375}{7290}\]
\[ \Rightarrow \frac{n - 1}{2} \times \frac{b}{a} = \frac{25}{6} . . . (i)\]
\[ \Rightarrow \frac{(n - 1)b}{a} = \frac{25}{3}\]
\[\text{ And } , \]
\[\frac{^{n}{}{C}_1 a^{n - 1} b^1}{^{n}{}{C}_0 a^n b^0} = \frac{7290}{729}\]
\[ \Rightarrow \frac{nb}{a} = \frac{10}{1} . . . (ii)\]
\[\text{ On dividing (ii) by (i), we get } \]
\[\frac{\frac{nb}{a}}{\frac{(n - 1)b}{a}} = \frac{10 \times 3}{25}\]
\[ \Rightarrow \frac{n}{n - 1} = \frac{6}{5}\]
\[ \Rightarrow n = 6\]
\[\text{ Since } , a^6 = 3^6 \]
\[\text{ Hence,} a = 3\]
\[\text{ Now } , \frac{nb}{a} = 10\]
\[ \Rightarrow b = 5\]
APPEARS IN
संबंधित प्रश्न
Find the 4th term in the expansion of (x – 2y)12 .
Find the middle terms in the expansions of `(3 - x^3/6)^7`
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find the middle terms in the expansion of:
(iv) \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The last two digits of the numbers 3400 are 01.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.