मराठी

Find A, B and N in the Expansion of (A + B)N, If the First Three Terms in the Expansion Are 729, 7290 and 30375 Respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.

उत्तर

\[\text{ We have: } \]

\[ T_1 = 729, T_2 = 7290 \text{ and }  T_3 = 30375\]

\[\text{ Now,}  \]

\[ ^{n}{}{C}_0 a^n b^0 = 729\]

\[ \Rightarrow a^n = 729\]

\[ \Rightarrow a^n = 3^6 \]

\[ ^{n}{}{C}_1 a^{n - 1} b^1 = 7290\]

\[^{n}{}{C}_2 a^{n - 2} b^2 = 30375\]

\[\text{ Also, } \]

\[\frac{^{n}{}{C}_2 a^{n - 2} b^2}{^{n}{}{C}_1 a^{n - 1} b^1} = \frac{30375}{7290}\]

\[ \Rightarrow \frac{n - 1}{2} \times \frac{b}{a} = \frac{25}{6} . . . (i)\]

\[ \Rightarrow \frac{(n - 1)b}{a} = \frac{25}{3}\]

\[\text{ And } , \]

\[\frac{^{n}{}{C}_1 a^{n - 1} b^1}{^{n}{}{C}_0 a^n b^0} = \frac{7290}{729}\]

\[ \Rightarrow \frac{nb}{a} = \frac{10}{1} . . . (ii)\]

\[\text{ On dividing (ii) by (i), we get } \]

\[\frac{\frac{nb}{a}}{\frac{(n - 1)b}{a}} = \frac{10 \times 3}{25}\]

\[ \Rightarrow \frac{n}{n - 1} = \frac{6}{5}\]

\[ \Rightarrow n = 6\]

\[\text{ Since } , a^6 = 3^6 \]

\[\text{ Hence,}  a = 3\]

\[\text{ Now } , \frac{nb}{a} = 10\]

\[ \Rightarrow b = 5\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.2 | Q 34 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


The last two digits of the numbers 3400 are 01.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×