हिंदी

Find A, B and N in the Expansion of (A + B)N, If the First Three Terms in the Expansion Are 729, 7290 and 30375 Respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.

उत्तर

\[\text{ We have: } \]

\[ T_1 = 729, T_2 = 7290 \text{ and }  T_3 = 30375\]

\[\text{ Now,}  \]

\[ ^{n}{}{C}_0 a^n b^0 = 729\]

\[ \Rightarrow a^n = 729\]

\[ \Rightarrow a^n = 3^6 \]

\[ ^{n}{}{C}_1 a^{n - 1} b^1 = 7290\]

\[^{n}{}{C}_2 a^{n - 2} b^2 = 30375\]

\[\text{ Also, } \]

\[\frac{^{n}{}{C}_2 a^{n - 2} b^2}{^{n}{}{C}_1 a^{n - 1} b^1} = \frac{30375}{7290}\]

\[ \Rightarrow \frac{n - 1}{2} \times \frac{b}{a} = \frac{25}{6} . . . (i)\]

\[ \Rightarrow \frac{(n - 1)b}{a} = \frac{25}{3}\]

\[\text{ And } , \]

\[\frac{^{n}{}{C}_1 a^{n - 1} b^1}{^{n}{}{C}_0 a^n b^0} = \frac{7290}{729}\]

\[ \Rightarrow \frac{nb}{a} = \frac{10}{1} . . . (ii)\]

\[\text{ On dividing (ii) by (i), we get } \]

\[\frac{\frac{nb}{a}}{\frac{(n - 1)b}{a}} = \frac{10 \times 3}{25}\]

\[ \Rightarrow \frac{n}{n - 1} = \frac{6}{5}\]

\[ \Rightarrow n = 6\]

\[\text{ Since } , a^6 = 3^6 \]

\[\text{ Hence,}  a = 3\]

\[\text{ Now } , \frac{nb}{a} = 10\]

\[ \Rightarrow b = 5\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.2 | Q 34 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coefficient of x5 in (x + 3)8


Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – y)6


Find the 4th term in the expansion of (x – 2y)12 .


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


Middle term in the expansion of (a3 + ba)28 is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×