Advertisements
Advertisements
प्रश्न
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
उत्तर
\[\text{ We have: } \]
\[ T_1 = 729, T_2 = 7290 \text{ and } T_3 = 30375\]
\[\text{ Now,} \]
\[ ^{n}{}{C}_0 a^n b^0 = 729\]
\[ \Rightarrow a^n = 729\]
\[ \Rightarrow a^n = 3^6 \]
\[ ^{n}{}{C}_1 a^{n - 1} b^1 = 7290\]
\[^{n}{}{C}_2 a^{n - 2} b^2 = 30375\]
\[\text{ Also, } \]
\[\frac{^{n}{}{C}_2 a^{n - 2} b^2}{^{n}{}{C}_1 a^{n - 1} b^1} = \frac{30375}{7290}\]
\[ \Rightarrow \frac{n - 1}{2} \times \frac{b}{a} = \frac{25}{6} . . . (i)\]
\[ \Rightarrow \frac{(n - 1)b}{a} = \frac{25}{3}\]
\[\text{ And } , \]
\[\frac{^{n}{}{C}_1 a^{n - 1} b^1}{^{n}{}{C}_0 a^n b^0} = \frac{7290}{729}\]
\[ \Rightarrow \frac{nb}{a} = \frac{10}{1} . . . (ii)\]
\[\text{ On dividing (ii) by (i), we get } \]
\[\frac{\frac{nb}{a}}{\frac{(n - 1)b}{a}} = \frac{10 \times 3}{25}\]
\[ \Rightarrow \frac{n}{n - 1} = \frac{6}{5}\]
\[ \Rightarrow n = 6\]
\[\text{ Since } , a^6 = 3^6 \]
\[\text{ Hence,} a = 3\]
\[\text{ Now } , \frac{nb}{a} = 10\]
\[ \Rightarrow b = 5\]
APPEARS IN
संबंधित प्रश्न
Find the coefficient of x5 in (x + 3)8
Find the coefficient of a5b7 in (a – 2b)12
Write the general term in the expansion of (x2 – y)6
Find the 4th term in the expansion of (x – 2y)12 .
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.
Middle term in the expansion of (a3 + ba)28 is ______.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.