हिंदी

The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

The given expression is (1 + x)2n–1 

Number of terms = 2n – 1 + 1 = 2n  ....(Even)

∴ Middle terms are `(2"n")/2` th term and `((2"n")/2 + 1)^"th"` terms

= nth terms and (n + 1)th terms

Coefficient of nth term = 2n–1Cn–1

And he coefficient of (n + 1)th term = 2n–1Cn

Sum of the coefficients = `""(2n + 1)C_(n - 1) + ""^(2n - 1)C_n`

= `""^(2n - 1)C_(n - 1) + ""^(2n - 1)C_n`

= `""^(2n - 1 + 1)C_n`

= 2nCn 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise [पृष्ठ १४६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise | Q 37 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×