हिंदी

Find the middle terms(s) in the expansion of: (v) ( x − 1 x ) 2 n + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 

उत्तर

\[\left( x - \frac{1}{x} \right)^{2n + 1} \]
\[\text{ Here, } \left( 2n + 1 \right) \text{ is an odd number .}  \]
\[\text{ Therefore, the middle terms are } \left( \frac{2n + 1 + 1}{2} \right)\text{ th and} \left( \frac{2n + 1 + 1}{2} + 1 \right)\text{ th i . e . (n + 1)th and (n + 2)th terms }  . \]
\[\text{ Now, we have: }  \]
\[ T_{n + 1} \]
\[ =^{2n + 1}{}{C}_n x^{2n + 1 - n} \times \frac{( - 1 )^n}{x^n}\]
`=(-1)^n  "^(2n+1)C_n x`
\[\text{ And,}  \]
\[ T_{n + 2} = T_{n + 1 + 1} \]
\[ =^{2n + 1}{}{C}_{n + 1} x^{2n + 1 - n - 1} \frac{( - 1 )^{n + 1}}{x^{n + 1}}\]
\[ = ( - 1 )^{n + 1} \]  ` "^{2n + 1}C_{n + 1} \times \frac{1}{x}`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.2 | Q 15.05 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coefficient of x5 in (x + 3)8


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is


In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


Middle term in the expansion of (a3 + ba)28 is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×