हिंदी

Find the term independent of x in the expansion of (3x-2x2)15 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the term independent of x in the expansion of `(3x - 2/x^2)^15`

योग

उत्तर

Given expression is `(3x - 2/x^2)^15`

General term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`

= `""^15"C"_r (3x)^(15 - r) (- 2/x^2)^r`

= `""^15"C"_r (3)^(15 - r) * x^(15 - r) (-2)^r * 1/x^(2r)`

= `""^15"C"_r (3)^(15 - r) * x^(15 - r - 2r) * (-2)^r`

= `""^15"C"_r (3)^(15 - r) * x^(15 - 3r) (-2)^r`

For getting a term independent of x

Put 15 – 3r = 0

⇒ r = 5

∴ The required term is `""^15"C"_5 (3)^(15 - 5) (-2)^5`

= `- ""^15"C"_3 (3)^10 (2)^5`

= `-(15 xx 14 xx 13 xx 12 xx 11)/(5 xx 4 xx 3 xx 2 xx 1) * (3)^10 (2)^5`

= `-7 xx 13 xx 3 xx 11 * 3(3)^10  (2)^5`

= – 3003 (3)10 (2)5

Hence, the required term = –3003 (3)10 (2)5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise | Q 4 | पृष्ठ १४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×