Advertisements
Advertisements
प्रश्न
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
उत्तर
Given expression is (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
Let us consider `(3/2 x^2 - 1/(3x))^9`
General Term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
`"T"_(r + 1) = ""^9"C"_r (3/2 x^2)^(9 - r) (- 1/(3x))^r`
= `""^9"C"_r (3/2)^(9 - r) (x)^(18 - 2r) * (- 1/3)^r * 1/(x)^r`
= `""^9"C"_r (3/2)^(9 - r) (x)^(18 - 2r - r) * (- 1/3)^r`
= `""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * x^(18 - 3r)`
So, the general term in the expansion of
`(1 + x + 2x^3) (3/2 x^2 - 1/(3x))^9`
= `""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(18 - 3r) + ""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(19 - 3r) + 2 * ""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(21 - 3r)`
For getting the term independent of x,
Put 18 – 3r = 0, 19 – 3r = 0 and 21 – 3r = 0, we get
r = 6
r = `19/3` and r = 7
The possible value of r are 6 and 7 ```.....(because r ≠ 19/3)`
∴ The term independent of x is
= `""^9"C"_6 (3/2)^(9 - 6) (- 1/3)^6 + 2 * ""^9"C"_7 (3/2)^(9 - 7) (- 1/3)^7`
= `(9 xx 8 xx 7 xx 6!)/(3 xx 2 xx 1 xx 6!) * 3^3/2^3 * 1/3^6 - 2 * (9 xx 8 xx 7!)/(7!2 xx 1) * 3^2/2^2 * 1/3^7`
= `84/8 * 1/3^3 - 36/4 * 2/3^5`
= `7/18 - 2/27`
= `(21 - 4)/54`
= `17/54`
Hence, the required term = `17/54`
APPEARS IN
संबंधित प्रश्न
Write the general term in the expansion of (x2 – y)6
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
Middle term in the expansion of (a3 + ba)28 is ______.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.