हिंदी

If the 6th, 7th and 8th Terms in the Expansion of (X + A)N Are Respectively 112, 7 and 1/4, Find X, A, N. - Mathematics

Advertisements
Advertisements

प्रश्न

If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.

उत्तर

\[\text{ The 6th, 7th and 8th terms in the expansion of }  (x + a )^n \text{ are }  ^{n}{}{C}_5 x^{n - 5} a^5 , ^{n}{}{C}_6 x^{n - 6} a^6 \text{ and }  ^{n}{}{C}_7 x^{n - 7} a^7 .\]

According to the question,

\[^{n}{}{C}_5 x^{n - 5} a^5 = 112\]

\[ ^{n}{}{C}_6 x^{n - 6} a^6 = 7\]

\[ ^{n}{}{C}_7 x^{n - 7} a^7 = \frac{1}{4}\]

\[\text{ Now } , \]

\[\frac{^{n}{}{C}_6 x^{n - 6} a^6}{^{n}{}{C}_5 x^{n - 5} a^5} = \frac{7}{112}\]

\[ \Rightarrow \frac{n - 6 + 1}{6} x^{- 1} a = \frac{1}{16}\]

\[ \Rightarrow \frac{a}{x} = \frac{3}{8n - 40} . . . \left( 1 \right)\]

\[\text{ Also, } \]

\[\frac{^{n}{}{C}_7 x^{n - 7} a^7}{^{n}{}{C}_6 x^{n - 6} a^6} = \frac{1/4}{7}\]

\[ \Rightarrow \frac{n - 7 + 1}{7} x^{- 1} a = \frac{1}{28}\]

\[ \Rightarrow \frac{a}{x} = \frac{1}{4n - 24} . . . \left( 2 \right)\]

\[\text{ From }  \left( 1 \right) \text{ and } \left( 2 \right), \text{ we get: } \]

\[\frac{3}{8n - 40} = \frac{1}{4n - 24}\]

\[ \Rightarrow \frac{3}{2n - 10} = \frac{1}{n - 6}\]

\[ \Rightarrow n = 8\]

\[\text{ Putting in eqn } \left( 1 \right) \text{ we get} \]

\[ \Rightarrow a = x\]

\[\text{ Now, } ^{8}{}{C}_5 x^{8 - 5} \left( \frac{x}{8} \right)^5 = 112\]

\[ \Rightarrow \frac{56 x^8}{8^5} = 112\]

\[ \Rightarrow x^8 = 4^8 \]

\[ \Rightarrow x = 4\]

\[\text{ By putting the value of x and n in } \left( 1 \right) \text{ we get} \]

\[a = \frac{1}{2}\]

\[a = 3 \text{ and } x = 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.2 | Q 32 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coefficient of x5 in (x + 3)8


Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – y)6


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×