हिंदी

Write the Middle Term in the Expansion of ((2x^2)/3 + 3/(2x)^2)^10 . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.

योग

उत्तर

\[\text{ Here, n, i . e . , 10, is an even number .}  \]

\[ \therefore \text{ Middle term }  = \left( \frac{10}{2} + 1 \right)th \text{ term = 6th term } \]

\[\text{ Thus, we have: } \]

\[ T_6 = T_{5 + 1} \]

\[ =^{10}{}{C}_5 \left( \frac{2 x^2}{3} \right)^{10 - 5} \left( \frac{3}{2 x^2} \right)^5 \]

\[ = \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2} \times \frac{2^5}{3^5} \times \frac{3^5}{2^5}\]

\[ = 252\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.3 | Q 4 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 4th term in the expansion of (x – 2y)12 .


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×