Advertisements
Advertisements
प्रश्न
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
उत्तर
Coefficients of the 2nd, 3rd and 4th terms in the given expansion are:
\[^{n}{}{C}_1 , ^{n}{}{C}_2 \text{ and } ^{n}{}{C}_3 \]
\[\text{ We have: } \]
\[2 \times ^{n}{}{C}_2 = ^{n}{}{C}_1 + ^{n}{}{C}_3 \]
\[\text{ Dividing both sides by} ^{n}{}{C}_2 , \text{ we get: } \]
\[2 = \frac{^{n}{}{C}_1}{^{n}{}{C}_2} + \frac{^{n}{}{C}_3}{^{n}{}{C}_2}\]
\[ \Rightarrow 2 = \frac{2}{n - 1} + \frac{n - 2}{3}\]
\[ \Rightarrow 6n - 6 = 6 + n^2 + 2 - 3n\]
\[ \Rightarrow n^2 - 9n + 14 = 0\]
\[ \Rightarrow n = 7 \left( \because n \neq 2 \text{ as } 2 > 3 \text{ in the 4th term } \right)\]
APPEARS IN
संबंधित प्रश्न
Find the coefficient of x5 in (x + 3)8
Find the 4th term in the expansion of (x – 2y)12 .
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.
If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.