हिंदी

Find the Middle Terms(S) in the Expansion Of: (Viii) ( 2 a X − B X 2 ) 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 

उत्तर

\[\left( 2ax - \frac{b}{x^2} \right)^{12} \]
\[\text{ Here, n is an even number .}  \]
\[ \therefore \text{ Middle term } = \left( \frac{12}{2} + 1 \right)^{th} = 7^{th} \text{ term } \]
\[\text{ Now, we have } \]
\[ T_7 = T_{6 + 1} \]
\[ = ^{12}{}{C}_6 \left( 2ax \right)^{12 - 6} \left( \frac{- b}{x^2} \right)^6 \]
\[ = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \times \left( \frac{2ab}{x} \right)^6 \]
\[ = \frac{59136 a^6 b^6}{x^6}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.2 | Q 15.08 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is


If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×