हिंदी

The number of terms in the expansion of [(2x + y3)4]7 is 8. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of terms in the expansion of [(2x + y3)4]7 is 8.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

Given expression is [(2x + y3)4]7 = (2x + 3y)28

So, the number of terms = 28 + 1 = 29

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise [पृष्ठ १४६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise | Q 36 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the middle terms in the expansions of `(x/3 + 9y)^10`


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×