Advertisements
Advertisements
प्रश्न
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
उत्तर
(x) Suppose the (r + 1)th term in the given expression is independent of x.
Now,
\[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6 \]
\[ T_{r + 1} = ^{6}{}{C}_r \left( \frac{3}{2} x^2 \right)^{6 - r} \left( \frac{- 1}{3x} \right)^r \]
`= \left( - 1 \right)^r "^6C_r \times \frac{3^{6 - r - r}}{2^{6 - r}} x^{12 - 2r - r} `
\[\text{ For this term to be independent of x, we must have} \]
\[12 - 3r = 0\]
\[ \Rightarrow r = 4\]
\[\text{ Hence, the required term is the 4th term } . \]
\[^{6}{}{C}_4 \times \frac{3^{6 - 4 - 4}}{2^{6 - 4}}\]
\[ = \frac{6 \times 5}{2 \times 1 \times 4 \times 9}\]
\[ = \frac{5}{12}\]
APPEARS IN
संबंधित प्रश्न
Find the coefficient of x5 in (x + 3)8
Write the general term in the expansion of (x2 – y)6
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
If the term free from x in the expansion of \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\] is 405, find the value of k.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.
Middle term in the expansion of (a3 + ba)28 is ______.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.