Advertisements
Advertisements
प्रश्न
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
उत्तर
(x) Suppose the (r + 1)th term in the given expression is independent of x.
Now,
\[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6 \]
\[ T_{r + 1} = ^{6}{}{C}_r \left( \frac{3}{2} x^2 \right)^{6 - r} \left( \frac{- 1}{3x} \right)^r \]
`= \left( - 1 \right)^r "^6C_r \times \frac{3^{6 - r - r}}{2^{6 - r}} x^{12 - 2r - r} `
\[\text{ For this term to be independent of x, we must have} \]
\[12 - 3r = 0\]
\[ \Rightarrow r = 4\]
\[\text{ Hence, the required term is the 4th term } . \]
\[^{6}{}{C}_4 \times \frac{3^{6 - 4 - 4}}{2^{6 - 4}}\]
\[ = \frac{6 \times 5}{2 \times 1 \times 4 \times 9}\]
\[ = \frac{5}{12}\]
APPEARS IN
संबंधित प्रश्न
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find the middle terms in the expansions of `(x/3 + 9y)^10`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
The number of terms in the expansion of [(2x + y3)4]7 is 8.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.