मराठी

Find the Middle Terms(S) in the Expansion Of: (Iv) ( 2 X − X 2 4 ) 9 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]

उत्तर

\[\left( 2x - \frac{x^2}{4} \right)^9 \]
\[\text{ Here, n is an odd number } . \]
\[\text{ Therefore, the middle terms are } \left( \frac{n + 1}{2} \right)\text{ th and } \left( \frac{n + 1}{2} + 1 \right)\text{ th, i . e . 5th and 6th terms . } \]
\[\text{ Now, we have} \]
\[ T_5 = T_{4 + 1} \]
\[ =^{9}{}{C}_4 (2x )^{9 - 4} \left( \frac{- x^2}{4} \right)^4 \]
\[ = \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 2^5 \frac{1}{4^4} x^{5 + 8} \]
\[ = \frac{63}{4} x^{13} \]
\[\text{ And} , \]
\[ T_6 = T_{5 + 1} \]
\[ = ^{9}{}{C}_5 (2x )^{9 - 5} \left( \frac{- x^2}{4} \right)^5 \]
\[ = - \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2} \times 2^4 \frac{1}{4^5} x^{4 + 10} \]
\[ = - \frac{63}{32} x^{14}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.2 | Q 15.04 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – y)6


Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of `(x/3 + 9y)^10`


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


Middle term in the expansion of (a3 + ba)28 is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×