Advertisements
Advertisements
प्रश्न
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
उत्तर
\[\text{ Suppose } r^{th} , (r + 1) {}^{th} \text{ and } (r + 2 )^{th} \text{ terms are the three consecutive terms .} \]
\[\text{ Their respective coefficients are } ^{n}{}{C}_{r - 1} , ^{n}{}{C}_r \text{ and } ^{n}{}{C}_{r + 1} . \]
\[\text{ We have: } \]
\[ ^{n}{}{C}_{r - 1} =^{n}{}{C}_{r + 1} = 56\]
\[ \Rightarrow r - 1 + r + 1 = n [\text{ If } ^{n}{}{C}_r = ^{n}{}{C}_s \Rightarrow r = s \text{ or } r + s = n]\]
\[ \Rightarrow 2r = n\]
\[ \Rightarrow r = \frac{n}{2}\]
\[\text{ Now } , \]
\[ ^{n}{}{C}_\frac{n}{2} = 70 \text{ and }^{n}{}{C}_\left( \frac{n}{2} - 1 \right) = 56\]
\[ \Rightarrow \frac{^{n}{}{C}_\left( \frac{n}{2} - 1 \right)}{^{n}{}{C}_\frac{n}{2}} = \frac{56}{70}\]
\[ \Rightarrow \frac{\frac{n}{2}}{\left( \frac{n}{2} + 1 \right)} = \frac{8}{10}\]
\[ \Rightarrow 5n = 4n + 8\]
\[ \Rightarrow n = 8\]
\[So, r = \frac{n}{2} = 4\]
\[\text{ Thus, the required terms are 4th, 5th and 6th .} \]
APPEARS IN
संबंधित प्रश्न
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
If the term free from x in the expansion of \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\] is 405, find the value of k.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.
The last two digits of the numbers 3400 are 01.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.