मराठी

The ratio of the coefficient of x15 to the term independent of x in x2+215x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.

पर्याय

  • 12:32

  • 1:32

  • 32:12

  • 32:1

MCQ
रिकाम्या जागा भरा

उत्तर

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is 1:32.

Explanation:

Let Tr+1 be the general term of `x^2 + 2^15/x`

So, Tr+1 = `""^15"C"_r  (x^2)^(15 - r)  2^r/x`

= `""^15"C"_r (2)^r  x^(30 - 3r)`  ....(1)

Now, for the coefficient of term containing x15

30 – 3r = 15

i.e., r = 5

Therefore, 15C5 (2)5 is the coefficient of x15   ....(From (1))

To find the term independent of x

Put 30 – 3r = 0

Thus 15C10 210 is the term independent of x ....(From (1))

Now the ratio is `(""^15"C"_5  2^5)/(""^15"C"_10  2^10) = 1/2^5 = 1/32`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Solved Examples [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Solved Examples | Q 21 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coefficient of x5 in (x + 3)8


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×