Advertisements
Advertisements
प्रश्न
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
पर्याय
Re (z) = 0
Im (z) = 0
Re (z) > 0, Im (z) > 0
Re (z) > 0, Im (z) < 0
उत्तर
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then Im (z) = 0.
Explanation:
On simplification, we get
z = `2 ""^5"C"_0 sqrt(3)^2/2 + ""^5"C"_2 sqrt(3)^3/2 i^2/2 + ""^5"C"_4 sqrt(3)/2 i^4/2`
Since i2 = –1 and i4 = 1
z will not contain any i and hence Im (z) = 0.
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: (2x – 3)6
Using Binomial Theorem, evaluate the following:
(96)3
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Expand the following (1 – x + x2)4
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.