Advertisements
Advertisements
प्रश्न
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
विकल्प
Re (z) = 0
Im (z) = 0
Re (z) > 0, Im (z) > 0
Re (z) > 0, Im (z) < 0
उत्तर
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then Im (z) = 0.
Explanation:
On simplification, we get
z = `2 ""^5"C"_0 sqrt(3)^2/2 + ""^5"C"_2 sqrt(3)^3/2 i^2/2 + ""^5"C"_4 sqrt(3)/2 i^4/2`
Since i2 = –1 and i4 = 1
z will not contain any i and hence Im (z) = 0.
APPEARS IN
संबंधित प्रश्न
Expand the expression: (1– 2x)5
Expand the expression: `(x/3 + 1/x)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate of the following:
(102)5
Using binomial theorem, evaluate the following:
(99)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Which of the following is larger? 9950 + 10050 or 10150
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.