Advertisements
Advertisements
प्रश्न
Expand the expression: `(x/3 + 1/x)^5`
उत्तर
By using Binomial Theorem, the expression `(x/3 + 1/x)^5` can be explained as
= `C_0 (x/3)^5 + ^5C_1 (x/3)^4 (1/x) + ^5C_2 (x/3)^3 (1/x)^2 + ^5C_3 (x/3)^2 (1/x)^3 + ^5C_4 (x/3) (1/x)^4 + ^5C_5 (1/x)^5`
= `(x^5)/243 + 5 (x^4/81) (1/x) + 10(x^3/27)(1/x^2) + 10 (x^2/9)(1/x^3) + 5(x/3)(1/x^4) + 1/x^5`
= `x^5/243 + (5x^2)/81 + 10/27 + 10/(9x) + 5/(5x^3) + 1/x^5`
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: (2x – 3)6
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate the following:
(96)3
Using binomial theorem, evaluate f the following:
(101)4
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Expand the following (1 – x + x2)4
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Which of the following is larger? 9950 + 10050 or 10150
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the coefficient of x15 in the expansion of (x – x2)10.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
The number of terms in the expansion of (x + y + z)n ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.