Advertisements
Advertisements
प्रश्न
Expand the expression: `(x + 1/x)^6`
उत्तर
`(x + 1/x)^6 = x^6 + ^6C_1 x^5(1/x) + ^6C_3 x^3 (1/x)^3 + ^6C_4 x^2 (1/x)^4 + ^6C_5 x (1/x)^5 + (1/x)^6`
= `x^6 + 6. x^5 . 1/x + 15. x^4 . 1/x^2 + 20. x^3 . 1/x^3 + 15 . x^2 . 1/x^4 + 6.x 1/(x^5) + 1/x^6`
= `x^6 + 6x^4 + 15x^2 + 20 + 15/x^2 + 6/x^4 + 1/x^6`
APPEARS IN
संबंधित प्रश्न
Expand the expression: (1– 2x)5
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: (2x – 3)6
Using binomial theorem, evaluate f the following:
(101)4
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Expand the following (1 – x + x2)4
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.