हिंदी

Find the value of (a2+a2-1)4+(a2-a2-1)4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`

योग

उत्तर

Firstly, the expression (x + y)4 + (x – y)4 is simplified by using Binomial Theorem.

(x + y)4 = 4C0x4 + 4C1x3y + 4C2x2y2 + 4C3xy3 + 4C4y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x - y)4 = 4C0x4 - 4C1x3y + 4C2 x2y2 - 4C3xy3 + 4C4y4

= x4 - 4x3y + 6x2y2 - 4xy3 + y4

∴ (x + y)4 + (x - y)4 = 2(x4 + 6x2 y2 + y4)

Putting x = a2 and y = `sqrt(a^2 - 1)`, we obtain

`a^2  + sqrt((a^2 - 1)^4)  +  a^2  - sqrt((a^2 - 1)^4)  = 2[(a^2)^4   + 6 (a^2)^2  sqrt((a^2 - 1)^2)  + sqrt(a^2  - 1)^4]`

= `2[a^8  + 6a^4  (a^2 - 1)  + (a^2  - 1)^2]`

= `2[a^8  +  6a^6  - 6a^4  + a^4  - 2a^2  + 1]`

= `2[a^8  + 6a^6 - 5a^4  - 2a^2 + 1]`

= `2a^8  + 12a^6 - 10a^4 - 4a^2  + 2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Miscellaneous Exercise | Q 6 | पृष्ठ १७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate f the following:

(101)4


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Find an approximation of (0.99)5 using the first three terms of its expansion.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The number of terms in the expansion of (x + y + z)n ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×