हिंदी

If the coefficients of x7 and x8 in 2+xn3 are equal, then n is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.

विकल्प

  • 56

  • 55

  • 45

  • 15

MCQ
रिक्त स्थान भरें

उत्तर

If the coefficients of x7 and x8 in `2 + x^"n"/3` are equal, then n is 55.

Explanation:

Since `"T"_("r" + 1) = ""^"n""C"_"r"  "a"^("n" - "r")  x^"r"` in expansion of (a + x)n

Therefore, T8 = `""^"n""C"_7 (2)^("n" - 7)  (x/3)^7`

= `""^"n""C"_7  (2^("n" - 7))/3^7  x^7`

And T9 = `""^"n""C"_8  (2)^("n" - 8)  (x/3)^8`

= `""^"n""C"_8  (2^("n" - 8))/3^8  x^8`

Therefore, `""^"n""C"_7  (2^("n" - 7))/3^7`

= `""^"n""C"_8 (2^("n" - 8))/3^8`   ....(Since it is given that coefficient of x7 = coefficient x8)

⇒ `"n"/((7)("n" - 7)) xx (8("n" - 8))/"n" = (2^("n" - 8))/3^8 * 3^7/(2^("n" - 7))`

⇒ `8/("n" - 7) = 1/6`

⇒ n = 55

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Solved Examples [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Solved Examples | Q 17 | पृष्ठ १३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, evaluate of the following:
(102)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×