हिंदी

Find an approximation of (0.99)5 using the first three terms of its expansion. - Mathematics

Advertisements
Advertisements

प्रश्न

Find an approximation of (0.99)5 using the first three terms of its expansion.

योग

उत्तर

0.99 = 1 - 0.01

∴ (0.99)5  = (1 - 0.01)5

= 5C0(1)5 - 5C1 (1)4 (0. 01) + 5C2 (1)3 (0.01)2

= 1 – 5 x 0.01 + 10 x 0.0001

= 1 – 0.05 + 0.001

= 1.001 – 0.05

= 0.951

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Miscellaneous Exercise | Q 7 | पृष्ठ १७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Expand the following (1 – x + x2)4 


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Which of the following is larger? 9950 + 10050  or 10150


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


Find the coefficient of x15 in the expansion of (x – x2)10.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×