हिंदी

Using binomial theorem, evaluate the following: (99)5 - Mathematics

Advertisements
Advertisements

प्रश्न

Using binomial theorem, evaluate the following:

(99)5

योग

उत्तर

99 can be written as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, 99 = 100 – 1

∴ `(99)^5 = (100 - 1)^5`

= `""^5C_0  (100)^5  +  ^5C_1  xx  (100)^4  xx  (- 1)  +  ^5C_2  xx  (100)^3  xx  (- 1)^2  +  ^5C_3  xx  (100)^2  xx  (-  1)^3  +  ^5C_4  xx  (100)  xx  (-4)^4  +  (-1)^5`

= 10000000000 – 5 x 100000000 + 10 x 1000000 – 10 x 10000 + 5 x 100 – 1

= 10000000000 – 500000000 + 10000000 – 100000 + 500 – 1

= 9509900499

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise 8.1 [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise 8.1 | Q 9 | पृष्ठ १६७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: (1– 2x)5


Expand the expression (1– 2x)5


Expand the expression: `(x/3 + 1/x)^5`


Expand the expression: `(x + 1/x)^6`


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Which of the following is larger? 9950 + 10050  or 10150


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


The number of terms in the expansion of (x + y + z)n ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×