हिंदी

The coefficient of a–6b4 in the expansion of (1a-2b3)10 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.

रिक्त स्थान भरें

उत्तर

The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is `1120/27`.

Explanation:

The given expansion is `(1/a - (2b)/3)^10`

From a–6b4 

We can take r = 4

∴ T5 = T4+1

= `""^10"C"_4 (1/a)^(10 - 4) (- (2b)/3)^4`

= `""^10"C"_4 (1/a)^6 ((-2)/3)^4 * b^4`

= `(10*9*8*7)/(4*3*2*1) xx 16/81 * a^-6b^4`

= `210 xx 16/81 a^-6b^4`

= `1120/27 a^-6b^4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise [पृष्ठ १४६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise | Q 29 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate the following:

(96)3


Using binomial theorem, evaluate the following:

(99)5


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×