मराठी

The coefficient of a–6b4 in the expansion of (1a-2b3)10 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.

रिकाम्या जागा भरा

उत्तर

The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is `1120/27`.

Explanation:

The given expansion is `(1/a - (2b)/3)^10`

From a–6b4 

We can take r = 4

∴ T5 = T4+1

= `""^10"C"_4 (1/a)^(10 - 4) (- (2b)/3)^4`

= `""^10"C"_4 (1/a)^6 ((-2)/3)^4 * b^4`

= `(10*9*8*7)/(4*3*2*1) xx 16/81 * a^-6b^4`

= `210 xx 16/81 a^-6b^4`

= `1120/27 a^-6b^4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 29 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: `(2/x - x/2)^5`


Expand the expression: (2x – 3)6


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate the following:

(96)3


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Expand the following (1 – x + x2)4 


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x15 in the expansion of (x – x2)10.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The number of terms in the expansion of (x + y + z)n ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×