मराठी

Evaluate (3+2)6-(3-2)6 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`

बेरीज

उत्तर

`(a + b)^6  =  ^6C_0 a^6  +  ^6C_1  a^5 b  +  ^6C_2  a^4  b^2  +  ^6C_3  a^3  b^3  +  ^6C_4  a^2  b^4  +  ^6C_5a^1b^5 +  ^6C_6  b^6`

= `a^6  +  6a^5b  +  15a^4  b^2  + 20a^3  b^3  +  15a^2  b^4  + 6ab^5  +  b^6`

`(a - b)^6 =  ^6C_0 a^6  -  ^6C_1  a^5 b  +  ^6C_2  a^4  b^2  -  ^6C_3  a^3  b^3  +  ^6C_4  a^2  b^4  -  ^6C_5a^1b^5 +  ^6C_6  b^6`

= `a^6  -  6a^5b  +  15a^4  b^2  -  20a^3  b^3  +  15a^2  b^4  - 6ab^5  +  b^6`

∴ `(a + b)^6  - (a -b)^6  =  2(6a^5b  + 20a^3  b^3  + 6ab^5)`

Putting a = `sqrt3` and b = `sqrt2`, we obtain

`(sqrt3 + sqrt2)^6  -  (sqrt3 + sqrt2)^6`  =  `2[6(sqrt3)^5 (sqrt2) + 20 (sqrt3)^3 (sqrt2)^3 + 6 (sqrt3)(sqrt2)^5]`

= `2[54sqrt6 + 120 sqrt6 + 24 sqrt6]`

= `2 xx 198 sqrt6`

= `396 sqrt6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Miscellaneous Exercise | Q 5 | पृष्ठ १७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: (1– 2x)5


Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find an approximation of (0.99)5 using the first three terms of its expansion.


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×