Advertisements
Advertisements
प्रश्न
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
उत्तर
`(a + b)^6 = ^6C_0 a^6 + ^6C_1 a^5 b + ^6C_2 a^4 b^2 + ^6C_3 a^3 b^3 + ^6C_4 a^2 b^4 + ^6C_5a^1b^5 + ^6C_6 b^6`
= `a^6 + 6a^5b + 15a^4 b^2 + 20a^3 b^3 + 15a^2 b^4 + 6ab^5 + b^6`
`(a - b)^6 = ^6C_0 a^6 - ^6C_1 a^5 b + ^6C_2 a^4 b^2 - ^6C_3 a^3 b^3 + ^6C_4 a^2 b^4 - ^6C_5a^1b^5 + ^6C_6 b^6`
= `a^6 - 6a^5b + 15a^4 b^2 - 20a^3 b^3 + 15a^2 b^4 - 6ab^5 + b^6`
∴ `(a + b)^6 - (a -b)^6 = 2(6a^5b + 20a^3 b^3 + 6ab^5)`
Putting a = `sqrt3` and b = `sqrt2`, we obtain
`(sqrt3 + sqrt2)^6 - (sqrt3 + sqrt2)^6` = `2[6(sqrt3)^5 (sqrt2) + 20 (sqrt3)^3 (sqrt2)^3 + 6 (sqrt3)(sqrt2)^5]`
= `2[54sqrt6 + 120 sqrt6 + 24 sqrt6]`
= `2 xx 198 sqrt6`
= `396 sqrt6`
APPEARS IN
संबंधित प्रश्न
Expand the expression: (1– 2x)5
Expand the expression (1– 2x)5
Expand the expression: (2x – 3)6
Expand the expression: `(x/3 + 1/x)^5`
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.