मराठी

Find the Value of (1.01)10 + (1 − 0.01)10 Correct to 7 Places of Decimal. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

उत्तर

\[(1 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = (1 + 0 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = 2[ ^{10}{}{C}_0 \times (0 . 01 )^0 +^{10}{}{C}_2 \times (0 . 01 )^2 +^{10}{}{C}_4 \times (0 . 01 )^4 +^{10}{}{C}_6 \times (0 . 01 )^6 + ^{10}{}{C}_8 \times (0 . 01 )^8 + ^{10}{}{C}_{10} \times (0 . 01 )^{10} ]\]

\[ = 2\left( 1 + 45 \times 0 . 0001 + 210 \times 0 . 00000001 + . . . \right) \]

\[ = 2\left( 1 + 0 . 0045 + 0 . 00000210 + . . . \right)\]

\[ = 2 . 0090042 + . . .\]

Hence, the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of the decimal is 2.0090042

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.1 | Q 11 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate f the following:

(101)4


Using binomial theorem, evaluate the following:

(99)5


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Expand the following (1 – x + x2)4 


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Which of the following is larger? 9950 + 10050  or 10150


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×