मराठी

Using Binomial Theorem Determine Which Number is Larger (1.2)4000 Or 800? - Mathematics

Advertisements
Advertisements

प्रश्न

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

उत्तर

We have:
(1.2)4000 

\[= (1 + 0 . 2 )^{4000} \]

\[ = ^{4000}{}{C}_0 + ^{4000}{}{C}_1 \times (0 . 2 )^1 + ^{4000}{}{C}_2 \times (0 . 2 )^2 + . . . ^{4000}{}{C}_{4000} \times (0 . 2 )^{4000}\]

\[= 1 + 4000 \times 0 . 2 + \text{ other positive terms} \]

\[ = 1 + 800 + \text{ other positive terms } \]

\[ = 801 + \text{ other positive terms} \]

\[ \because 801 > 800\]

Hence, (1.2)4000 is greater than 800

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.1 | Q 10 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: `(2/x - x/2)^5`


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate of the following:
(102)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x15 in the expansion of (x – x2)10.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×