Advertisements
Advertisements
प्रश्न
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
पर्याय
n = 2r
n = 3r
n = 2r + 1
None of these
उत्तर
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then n = 2r.
Explanation:
Given that r > 1 and n > 2
Then `"T"_(3r) = "T"_(3r - 1 + 1)`
= `""^(2n)"C"_(3r - 1) * x^(3r - 1)`
And `"T_(r + 2) = "T"_(r + 1 + 1)`
= `""^(2n)"C"_(r + 1) x^(r + 1)`
We have `""^(2n)"C"_(3r - 1) = ""^(2n)"C"_(r + 1)`
⇒ 3r – 1 + r + 1 = 2n `....[because ""^n"C"_p = ""^n"C"_q ⇒ n = p + q]`
⇒ 4r = 2n
n = 2r
APPEARS IN
संबंधित प्रश्न
Expand the expression: `(2/x - x/2)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate the following:
(96)3
Using binomial theorem, evaluate the following:
(99)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The number of terms in the expansion of (x + y + z)n ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.