Advertisements
Advertisements
प्रश्न
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
उत्तर
Using Binomial Theorem, the expressions, (x + 1)6 and (x – 1)6, can be expanded as
`(x + 1)^6 = x^6 + ^6C_1 x^5 1^1 + ^6C_2 x^4 xx 1^2 + ^6C_3 x^3 xx 1^3 + ^6C_4 x^2 1^4 + ^6C_5. x. 1^5 + 1^6`
= `x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1`
similarly, `(x -1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1`
on adding `(x - 1)^6 + (x - 1)^6 = 2(x^6 + 15x^4 + 15x^2 + 1)`
Putting x = `sqrt2` in this
`(sqrt2 + 1)^6 + (sqrt2 - 1)^6 = 2[(sqrt2)^6 + 15 (sqrt2)^4 + 15 (sqrt2)^2 + 1]`
= 2[8 + 15 x 4 + 15 x 2 +1]
= 2[8 + 60 + 30 +1]
= 2 x 99
= 198
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: `(x/3 + 1/x)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate the following:
(96)3
Using Binomial Theorem, evaluate of the following:
(102)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
Find the coefficient of x15 in the expansion of (x – x2)10.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
The number of terms in the expansion of (x + y + z)n ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.