Advertisements
Advertisements
प्रश्न
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
उत्तर
We have to prove that 9n + 1 - 8n - 9 = 64k
∴ 9 n+1 - 8n - 9 = (8 + 1)n+ 1 - 8n - 9 [put 9 = 8 + 1]
= \[\ce{[^{n + 1}C_0 8^{n + 1} + ... + ^{n + 1}C_{n-2} 8^3 + ^{n + 1} C_{n - 1} 8^2 + ^{n + 1} C_n 8 + ^{n + 1}C_{n + 1}] - 8n - 9}\]
= \[\ce{^{n + 1} C_0 8 ^{n + 1} + ... + ^{n + 1}C_{n - 2} 8^3 + ^{n + 1}C_{n - 1}8^2 + (n + 1) 8 + 1 - 8n - 9}\]
= \[\ce{^{n + 1}C_0 8 ^{n + 1} + ... + ^{n + 1}C_{n - 2}8^3 + ^{n + 1}C_{n - 1}8^2 + 8n + 8 + 1 - 8n - 9}\]
= \[\ce{^{n + 1}C_0 8^{n + 1} + ... + ^{n + 1}C_{n - 2}8^3 + ^{n + 1}C_{n - 1}8^2}\]
= \[\ce{8^2 [^{n + 1}C_0 8^{n - 1} + ... + ^{n + 1}C_{n - 2} 8 + ^{n + 1}C_{n - 1}]}\]
= 64k [where, k = n + 1C0 8n - 1 + .... + n + 1Cn - 1]
Hence, 9n + 1 - 8n - 9 is divisible by 64, whenever n is a positive integer.
APPEARS IN
संबंधित प्रश्न
Expand the expression: (1– 2x)5
Expand the expression (1– 2x)5
Using binomial theorem, evaluate the following:
(99)5
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the coefficient of x15 in the expansion of (x – x2)10.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.