मराठी

Find the sixth term of the expansion n(y12+x13)n, if the binomial coefficient of the third term from the end is 45. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.

बेरीज

उत्तर

The given expression is `(y^(1/2) + x^(1/3))^"n"`

Since the binomial coefficient of third term from the end = Binomial coefficient of third term from the beginning = nC2

nC2 = 45

⇒ `("n"("n" - 1))/2` = 45

⇒ n2 – n = 90

⇒ n2 – n – 90 = 0

⇒ n2 – 10n + 9n – 90 = 0

⇒ n(n – 10) + 9(n – 10) = 0

⇒ (n – 10)(n + 9) = 0

⇒ n = 10, n = –9

⇒ n = 10, n ≠ – 9

So, the given expression becomes `(y^(1/2) + x^(1/3))^10`

Sixth term is this expression T6 = T5+1

= `""^10"C"_5 (y^(1/2))^(10 - 5)  (x^(1/3))^5`

= `""^10"C"_5  y^(5/2) * x^(5/3)`

= `252  y^(5/2) x^(5/3)`

Hence, the required term = `252  y^(5/2) * x^(5/3)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 8 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: (2x – 3)6


Expand the expression: `(x + 1/x)^6`


Using binomial theorem, evaluate the following:

(99)5


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Which of the following is larger? 9950 + 10050  or 10150


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×