Advertisements
Advertisements
Question
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
Solution
The given expression is `(y^(1/2) + x^(1/3))^"n"`
Since the binomial coefficient of third term from the end = Binomial coefficient of third term from the beginning = nC2
∴ nC2 = 45
⇒ `("n"("n" - 1))/2` = 45
⇒ n2 – n = 90
⇒ n2 – n – 90 = 0
⇒ n2 – 10n + 9n – 90 = 0
⇒ n(n – 10) + 9(n – 10) = 0
⇒ (n – 10)(n + 9) = 0
⇒ n = 10, n = –9
⇒ n = 10, n ≠ – 9
So, the given expression becomes `(y^(1/2) + x^(1/3))^10`
Sixth term is this expression T6 = T5+1
= `""^10"C"_5 (y^(1/2))^(10 - 5) (x^(1/3))^5`
= `""^10"C"_5 y^(5/2) * x^(5/3)`
= `252 y^(5/2) x^(5/3)`
Hence, the required term = `252 y^(5/2) * x^(5/3)`
APPEARS IN
RELATED QUESTIONS
Expand the expression: (1– 2x)5
Expand the expression: `(x/3 + 1/x)^5`
Using Binomial Theorem, evaluate of the following:
(102)5
Using binomial theorem, evaluate f the following:
(101)4
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Expand the following (1 – x + x2)4
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Which of the following is larger? 9950 + 10050 or 10150
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.