English

Find the sixth term of the expansion n(y12+x13)n, if the binomial coefficient of the third term from the end is 45. - Mathematics

Advertisements
Advertisements

Question

Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.

Sum

Solution

The given expression is `(y^(1/2) + x^(1/3))^"n"`

Since the binomial coefficient of third term from the end = Binomial coefficient of third term from the beginning = nC2

nC2 = 45

⇒ `("n"("n" - 1))/2` = 45

⇒ n2 – n = 90

⇒ n2 – n – 90 = 0

⇒ n2 – 10n + 9n – 90 = 0

⇒ n(n – 10) + 9(n – 10) = 0

⇒ (n – 10)(n + 9) = 0

⇒ n = 10, n = –9

⇒ n = 10, n ≠ – 9

So, the given expression becomes `(y^(1/2) + x^(1/3))^10`

Sixth term is this expression T6 = T5+1

= `""^10"C"_5 (y^(1/2))^(10 - 5)  (x^(1/3))^5`

= `""^10"C"_5  y^(5/2) * x^(5/3)`

= `252  y^(5/2) x^(5/3)`

Hence, the required term = `252  y^(5/2) * x^(5/3)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 143]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 8 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: (1– 2x)5


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate f the following:

(101)4


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Expand the following (1 – x + x2)4 


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Which of the following is larger? 9950 + 10050  or 10150


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×