English

Show that 24n+4-15n-16, where n ∈ N is divisible by 225. - Mathematics

Advertisements
Advertisements

Question

Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.

Sum

Solution

We have `2^(4n + 4) - 15n - 16`

= `2^(4(n + 1)) - 15n - 16`

= `16^(n + 1) - 15n - 16`

= `(1 + 15)^(n + 1) - 15n - 16`

= `""^(n + 1)"C"_0  15^0 + ""^(n + 1)"C"_1  15^1 + ""^(n + 1)"C"_2  15^2 + ""^(n + 1)"C"_3  15^3 + ... + ""^(n + 1)"C"_(n + 1) (15)^(n + 1) - 15n - 16`

= `1 + (n + 1)15 + ""^(n + 1)"C"_2  15^2 + ""^(n + 1)"C"_3  15^3 + ... + ""^(n + 1)"C"_(n + 1) (15)^(n + 1) - 15n - 16`

= `1 + 15n + 15 + ""^(n + 1)"C"_2  15^2 + ""^(n + 1)"C"_3  15^3 + ... + ""^(n + 1)"C"_(n + 1)  (15)^(n + 1) - 15n - 16`

= `15^2 [""^(n + 1)"C"_2 + ""^(n + 1)"C"_3  15 + ... "so  on"]`

Thus, `2^(4n + 4) - 15n - 16` is divisible by 225.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Solved Examples [Page 135]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 10 | Page 135

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: (1– 2x)5


Expand the expression (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: `(x/3 + 1/x)^5`


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Expand the following (1 – x + x2)4 


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Which of the following is larger? 9950 + 10050  or 10150


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The number of terms in the expansion of (x + y + z)n ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×