Advertisements
Advertisements
Question
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Solution
\[3^{3n} - 26n - 1 = {27}^n - 26n - 1 . . . \left( 1 \right)\]
\[\text{ Now, we have: } \]
\[ {27}^n = (1 + 26 )^n \]
\[\text{ On expanding, we get } \]
\[(1 + 26 )^n = ^{n}{}{C}_0 \times {26}^0 +^{n}{}{C}_1 \times {26}^1 + ^{n}{}{C}_2 \times {26}^2 + ^{n}{}{C}_3 \times {26}^3 +^{n}{}{C}_4 \times {26}^4 + . . . ^{n}{}{C}_n \times {26}^n \]
\[ \Rightarrow {27}^n = 1 + 26n + {26}^2 [^{n}{}{C}_2 + ^{n}{}{C}_3 \times {26}^1 + ^{n}{}{C}_4 \times {26}^2 + . . . ^{n}{}{C}_n \times {26}^{n - 2} ]\]
\[ \Rightarrow {27}^n - 26n - 1 = 676 \times \text{ an integer } \]
\[ {27}^n - 26n - 1 \text{ is divisible by } 676\]
\[\text{ Or, }\]
\[ 3^{3n} - 26n - 1 \text{ is divisible by } 676 \left( \text{ From } (1) \right)\]
APPEARS IN
RELATED QUESTIONS
Expand the expression (1– 2x)5
Expand the expression: (2x – 3)6
Using Binomial Theorem, evaluate the following:
(96)3
Using Binomial Theorem, evaluate of the following:
(102)5
Using binomial theorem, evaluate the following:
(99)5
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find an approximation of (0.99)5 using the first three terms of its expansion.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
Which of the following is larger? 9950 + 10050 or 10150
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the coefficient of x15 in the expansion of (x – x2)10.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.