English

If N is a Positive Integer, Prove that 3 3 N − 26 N − 1 is Divisible by 676. - Mathematics

Advertisements
Advertisements

Question

If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Solution

\[3^{3n} - 26n - 1 = {27}^n - 26n - 1 . . . \left( 1 \right)\]

\[\text{ Now, we have: } \]

\[ {27}^n = (1 + 26 )^n \]

\[\text{ On expanding, we get } \]

\[(1 + 26 )^n = ^{n}{}{C}_0 \times {26}^0 +^{n}{}{C}_1 \times {26}^1 + ^{n}{}{C}_2 \times {26}^2 + ^{n}{}{C}_3 \times {26}^3 +^{n}{}{C}_4 \times {26}^4 + . . . ^{n}{}{C}_n \times {26}^n \]

\[ \Rightarrow {27}^n = 1 + 26n + {26}^2 [^{n}{}{C}_2 + ^{n}{}{C}_3 \times {26}^1 + ^{n}{}{C}_4 \times {26}^2 + . . . ^{n}{}{C}_n \times {26}^{n - 2} ]\]

\[ \Rightarrow {27}^n - 26n - 1 = 676 \times \text{ an integer } \]

\[ {27}^n - 26n - 1 \text{ is divisible by  } 676\]

\[\text{ Or, }\]

\[ 3^{3n} - 26n - 1 \text{ is divisible by } 676 \left( \text{ From } (1) \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.1 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.1 | Q 8 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate the following:

(99)5


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find an approximation of (0.99)5 using the first three terms of its expansion.


Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Which of the following is larger? 9950 + 10050  or 10150


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×