English

Find a If the Coefficients of X2 and X3 in the Expansion of (3 + Ax)9 Are Equal. - Mathematics

Advertisements
Advertisements

Question

Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

Solution

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Miscellaneous Exercise [Page 175]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Miscellaneous Exercise | Q 1 | Page 175

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate of the following:
(102)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find an approximation of (0.99)5 using the first three terms of its expansion.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Expand the following (1 – x + x2)4 


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×