English

Evaluate (3+2)6-(3-2)6 - Mathematics

Advertisements
Advertisements

Question

Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`

Sum

Solution

`(a + b)^6  =  ^6C_0 a^6  +  ^6C_1  a^5 b  +  ^6C_2  a^4  b^2  +  ^6C_3  a^3  b^3  +  ^6C_4  a^2  b^4  +  ^6C_5a^1b^5 +  ^6C_6  b^6`

= `a^6  +  6a^5b  +  15a^4  b^2  + 20a^3  b^3  +  15a^2  b^4  + 6ab^5  +  b^6`

`(a - b)^6 =  ^6C_0 a^6  -  ^6C_1  a^5 b  +  ^6C_2  a^4  b^2  -  ^6C_3  a^3  b^3  +  ^6C_4  a^2  b^4  -  ^6C_5a^1b^5 +  ^6C_6  b^6`

= `a^6  -  6a^5b  +  15a^4  b^2  -  20a^3  b^3  +  15a^2  b^4  - 6ab^5  +  b^6`

∴ `(a + b)^6  - (a -b)^6  =  2(6a^5b  + 20a^3  b^3  + 6ab^5)`

Putting a = `sqrt3` and b = `sqrt2`, we obtain

`(sqrt3 + sqrt2)^6  -  (sqrt3 + sqrt2)^6`  =  `2[6(sqrt3)^5 (sqrt2) + 20 (sqrt3)^3 (sqrt2)^3 + 6 (sqrt3)(sqrt2)^5]`

= `2[54sqrt6 + 120 sqrt6 + 24 sqrt6]`

= `2 xx 198 sqrt6`

= `396 sqrt6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Miscellaneous Exercise [Page 175]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Miscellaneous Exercise | Q 5 | Page 175

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Expand the following (1 – x + x2)4 


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Which of the following is larger? 9950 + 10050  or 10150


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The number of terms in the expansion of (x + y + z)n ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×