हिंदी

Evaluate (3+2)6-(3-2)6 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`

योग

उत्तर

`(a + b)^6  =  ^6C_0 a^6  +  ^6C_1  a^5 b  +  ^6C_2  a^4  b^2  +  ^6C_3  a^3  b^3  +  ^6C_4  a^2  b^4  +  ^6C_5a^1b^5 +  ^6C_6  b^6`

= `a^6  +  6a^5b  +  15a^4  b^2  + 20a^3  b^3  +  15a^2  b^4  + 6ab^5  +  b^6`

`(a - b)^6 =  ^6C_0 a^6  -  ^6C_1  a^5 b  +  ^6C_2  a^4  b^2  -  ^6C_3  a^3  b^3  +  ^6C_4  a^2  b^4  -  ^6C_5a^1b^5 +  ^6C_6  b^6`

= `a^6  -  6a^5b  +  15a^4  b^2  -  20a^3  b^3  +  15a^2  b^4  - 6ab^5  +  b^6`

∴ `(a + b)^6  - (a -b)^6  =  2(6a^5b  + 20a^3  b^3  + 6ab^5)`

Putting a = `sqrt3` and b = `sqrt2`, we obtain

`(sqrt3 + sqrt2)^6  -  (sqrt3 + sqrt2)^6`  =  `2[6(sqrt3)^5 (sqrt2) + 20 (sqrt3)^3 (sqrt2)^3 + 6 (sqrt3)(sqrt2)^5]`

= `2[54sqrt6 + 120 sqrt6 + 24 sqrt6]`

= `2 xx 198 sqrt6`

= `396 sqrt6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Miscellaneous Exercise | Q 5 | पृष्ठ १७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: (1– 2x)5


Expand the expression (1– 2x)5


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, evaluate of the following:
(102)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×