हिंदी

Find the Coefficient of X5 in the Product (1 + 2x)6 (1 – X)7 Using Binomial Theorem. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.

उत्तर

Using Binomial Theorem, the expressions, (1 + 2x)6 and (1 – x)7, can be expanded as

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Miscellaneous Exercise | Q 3 | पृष्ठ १७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: (2x – 3)6


Using Binomial Theorem, evaluate the following:

(96)3


Using binomial theorem, evaluate the following:

(99)5


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Which of the following is larger? 9950 + 10050  or 10150


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×