हिंदी

Expand the expression: (2x-x2)5 - Mathematics

Advertisements
Advertisements

प्रश्न

Expand the expression: `(2/x - x/2)^5`

योग

उत्तर

By using Binomial Theorem, the expression `(2/x - x/2)^5` can be explained as

`(2/x - x/2)^5  =  ^5C_0 (2/x)^5 -  ^5C_1  (2/x)^4  (x/2)  +  ^5C_2  (2/x)^3  (x/2)^2`

- `""^5C_3  (2/x)^2  (x/2)^3  +  ^5C_4 (2/x) (x/2)^4  -  ^5C_5  (x/2)^5`

= `(32)/x^5  - 5 (16/(x^4)) (x/2)  + 10 (8/x^3) (x^2/4) - 10 (4/x^2) (x^3/8) +5 (2/x)(x^4/16) - x^5/32`

= `32/x^5  - 40/x^3  + 20/x  - 5x + 5/8 x^3  - x^5/32`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise 8.1 [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise 8.1 | Q 2 | पृष्ठ १६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find an approximation of (0.99)5 using the first three terms of its expansion.


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×