हिंदी

Find the Value of (1.01)10 + (1 − 0.01)10 Correct to 7 Places of Decimal. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

उत्तर

\[(1 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = (1 + 0 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = 2[ ^{10}{}{C}_0 \times (0 . 01 )^0 +^{10}{}{C}_2 \times (0 . 01 )^2 +^{10}{}{C}_4 \times (0 . 01 )^4 +^{10}{}{C}_6 \times (0 . 01 )^6 + ^{10}{}{C}_8 \times (0 . 01 )^8 + ^{10}{}{C}_{10} \times (0 . 01 )^{10} ]\]

\[ = 2\left( 1 + 45 \times 0 . 0001 + 210 \times 0 . 00000001 + . . . \right) \]

\[ = 2\left( 1 + 0 . 0045 + 0 . 00000210 + . . . \right)\]

\[ = 2 . 0090042 + . . .\]

Hence, the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of the decimal is 2.0090042

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.1 | Q 11 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate the following:

(96)3


Using binomial theorem, evaluate f the following:

(101)4


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Which of the following is larger? 9950 + 10050  or 10150


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The number of terms in the expansion of (x + y + z)n ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×