Advertisements
Advertisements
प्रश्न
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
उत्तर
\[(1 . 01 )^{10} + (1 - 0 . 01 )^{10} \]
\[ = (1 + 0 . 01 )^{10} + (1 - 0 . 01 )^{10} \]
\[ = 2[ ^{10}{}{C}_0 \times (0 . 01 )^0 +^{10}{}{C}_2 \times (0 . 01 )^2 +^{10}{}{C}_4 \times (0 . 01 )^4 +^{10}{}{C}_6 \times (0 . 01 )^6 + ^{10}{}{C}_8 \times (0 . 01 )^8 + ^{10}{}{C}_{10} \times (0 . 01 )^{10} ]\]
\[ = 2\left( 1 + 45 \times 0 . 0001 + 210 \times 0 . 00000001 + . . . \right) \]
\[ = 2\left( 1 + 0 . 0045 + 0 . 00000210 + . . . \right)\]
\[ = 2 . 0090042 + . . .\]
Hence, the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of the decimal is 2.0090042
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: (2x – 3)6
Expand the expression: `(x/3 + 1/x)^5`
Using Binomial Theorem, evaluate the following:
(96)3
Using binomial theorem, evaluate f the following:
(101)4
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
Which of the following is larger? 9950 + 10050 or 10150
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the coefficient of x15 in the expansion of (x – x2)10.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The number of terms in the expansion of (x + y + z)n ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.