हिंदी

Find the coefficient of x11 in the expansion of (x3-2x2)12 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`

योग

उत्तर

Let the general term, i.e., (r + 1)th contain x11.

We have `"T"_(r + 1) = ""^12"C"_r  (x^3)^(12 - r)  (- 2/x^2)^r`

= `""^12"C"_r  x^(36 - 3r - 2r)  (- 1)^r  2r`

= `""^12"C"_r  (-1)^r  2r  x^(36 - 5r)`

Now for this to contain x11

We observe that 36 – 5r = 11

i.e., r = 5

Thus, the coefficient of x11 is  

`""^12"C"_5  (-1)^5  2^5 = - (12 xx 11 xx 10 xx 9 xx 8)/(5 xx 4 xx 3 xx 2) xx 32`

= – 25344

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Solved Examples [पृष्ठ १३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Solved Examples | Q 5 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: `(2/x - x/2)^5`


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate the following:

(96)3


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Expand the following (1 – x + x2)4 


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×