Advertisements
Advertisements
प्रश्न
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
उत्तर
APPEARS IN
संबंधित प्रश्न
Expand the expression: (1– 2x)5
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: (2x – 3)6
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate of the following:
(102)5
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Which of the following is larger? 9950 + 10050 or 10150
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.