हिंदी

Expand using Binomial Theorem (1+x2-2x)4,x≠0 - Mathematics

Advertisements
Advertisements

प्रश्न

Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`

योग

उत्तर

`(1  + x/2  -  2/x)^4  =  [(1  + x/2) - 2/x]^4`

= `(1  + x/4)^4  +  ^4C_1  (1  + x/2)^3  (-2/x)  +  ^4C_2  (1  + x/2)^2  (-2/x)^2  +  ^4C_3 (1  +  x/2)  (-2/x)^3  +  ^4C_4  (-2/x)^4`

= `(1  + x/2)^4  + 4(1  + x/2)^3  (-2/x)  +  6  (1  + x/2)^2  (4/x^2)  + 4 (1  + x/2) (- 8/x^3)  + (16/x^4)`

= `(1  + x/2)^4 ,   (1  + x/2)^3  ,  (1  + x/2)^2`  on spreading

= `(1  + x/2  - 2/x)^4  = (1 + 4.  x/2 + 6  x^2/4  + 4.  x^3/8  +  x^4/16) - 8/x  (1 +3 .  x/2  + 3.  x^2/4  +  x^3/8)  +  24/x^2  (1  + x + x^2/4)  - 32/x^3 (1  +  x/2) +  16/x^4`

= `(1  +  2x  + 3/2 x^2  + 1/2  x^3  + x^4/16) - 8/x(1  + 3/2 x + 3/4  x^2  + x^3/8) + 24/x^2 (1 + x + x^2/4) - 32/x^3 (1 + x/2) + 16/x^4`

= `(1 + 2x  + 3/2  x^2  +  1/2 x^3  + x^4/16) - (8/x  + 12 + 6x + x^2) + (24/x^2  + 24/x  + 6) - (32/x^3  +  16/x^2) + 16/x^4`

= `x^4/16  + x^3/2 + (3/2 - 1)x^2 + (2 -6)x + (1 - 12 +6) + (- 8 + 24) 1/x + (24 -16) 1/x^2  - 32/x^3 + 16/x^4`

= `x^4/16 + x^3/2 + x^2/2  - 4x -5 + 16/x + 8/x^2 - 32/x^3  + 16/x^4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Miscellaneous Exercise | Q 9 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Expand the following (1 – x + x2)4 


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


Which of the following is larger? 9950 + 10050  or 10150


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×